DuPont in CRISPR-Cas patent land grab.

Daniel Grushkin, Nature Biotechnology (2016) 34:13. http://www.ncbi.nlm.nih.gov/pubmed/26744967

DuPont Pioneer has entered into a partnership with Caribou Biosciences to share intellectual property rights for CRISPR/Cas gene editing in plants.  Caribou Biosciences was founded by CRISPR researcher Jennifer Doudna to develop commercial uses of the CRISPR/Cas technology.  This partnership enables sharing of intellectual property, but each company is limited in the plant species they may modify.  DuPont Pioneer may use the technology to edit major crops like corn and soybean, while Caribou Biosciences will be limited to editing smaller market crops, such as fruits and vegetables.

CRISPR could fix blindness-causing mutation

Alexandra Ossole, Popular Science, 28 January 2016 http://www.popsci.com/crispr-could-fix-blindness-causing-mutation

Retinitis pigmentosa is an inherited disease that causes retina degradation, ultimately resulting in blindness.  This disease has been well characterized, 90% of retinitis pigmentosa cases are the result of a single mutation in a single gene.  Using skin cells from patients with this mutation, researchers were able to generate induced pluripotent stems cells and use CRISPR to correct the mutation.  Researchers hope that these cells may one day be able to be grafted into a patient’s eye to restore sight, or at least slow the progression of the disease.

Gene Editing Tool Hailed As A Breakthrough, And It Really Is One

Joe Palca, NPR http://www.npr.org/sections/health-shots/2015/12/28/460705645/gene-editing-tool-hailed-as-a-breakthrough-and-it-really-is-one

The journal Science has named CRISPR-Cas9 the “breakthrough of the year” due to its potential to revolutionize gene editing and gene therapy.  This technology will allow scientist to study the relationship between genes and disease in a way never before possible.

Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos

Niu et al. Cell (2014) 156:836-843. http://www.ncbi.nlm.nih.gov/pubmed/24486104

Monkeys are an important model for studying human disease and developing drug therapies.  However their use has been limited by the inability to produce specific genetic modifications.  By using the CRISPR/Cas9 system Niu et al. were able selectively disrupt both PPAR-γ and RAG1 in the cynomolgus monkey (Macaca fascicularis) with no off-target modifications detected, thus demonstrating that CRISPR/Cas9 technology could be used to further expand our knowledge of human disease through the use of monkey models.

In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system.

Maddalo et al. Nature (2014) 516:423-427. http://www.ncbi.nlm.nih.gov/pubmed/25337876

Many human cancers are the result of chromosomal rearrangements which has made modeling certain cancers in mice challenging.  Using CRISPR/Cas9 gene editing Maddalo et al. were able to induce chromosomal rearrangements similar to those found non-small cell lung cancers in mouse lung tissue.  CRISPR/Cas9 modified mice developed lung tumors when compared to control mice demonstrating the capability of CRISPR/Cas9 technology to selectively edit mouse tissues to study human cancers.

Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype.

Yin et al. Nat Biotechnol (2014) 32:551-553. http://www.ncbi.nlm.nih.gov/pubmed/24681508

Fatal hereditary diseases are potential targets for CRISPR/Cas9 gene therapies using homology directed repair.  Using a mouse model for hereditary tyrosinemia type I – which causes liver damage and ultimately failure due to the buildup of toxic metabolites in the tyrosine catabolic pathway – d containing the same G to A point mutation found in the human form of the disease, Yin et al where able to repair the gene and reverse the associated phenotypes.  While CRISPR/Cas9 gene editing has yet to be used to correct human genetic disease, results such as this provide a promising outlook for treatment of genetic diseases.

An Arcane Patent Law May Decide Crispr’s Big Legal Fight

Sarah Zhang, Wired.com, January 5th, 2016 http://www.wired.com/2016/01/crispr-patent-dispute-gets-really-arcane/.

The dispute over who owns the CRISPR patents has triggered an outdated patent law known as an interference proceeding to determine the validity of the Broad Institutes patents.  Interference proceedings were removed from patent disputes in 2013, however, since both the Broad Institutes and University of California-Berkely’s patents were filed prior to 2013 the dispute triggered what may be the last such proceeding.  Interference proceedings resemble a court, a panel of three judges listen to oral arguments to determine who invented the technology first.  Berkeley requested the interference proceeding after all the CRISPR patents were awarded to the Broad Institute.  US patent law now uses a first to file and not first to invent criteria to settle disputes.

Cambridge startup Editas plans to test IPO market for biotechs

Robert Weisman.  The Boston Globe. January 5th, 2016 https://www.bostonglobe.com/business/2016/01/04/cambridge-startup-editas-plans-test-ipo-market-for-biotechs/uqK7XseLzbLNTtH5ENJ7bM/story.html.

Editas Medicine Inc. has filed for an IPO worth up to $100 million in stock.  Editas was founded in 2013 to develop CRISPR/Cas9 technology licensed from the Broad Institute for medical therapies and raised $120 million in private investments last August.

A proposed regulatory framework for genome-edited crops

Huang S et al. Nature Genetics (2016) 48:109-111. http://www.ncbi.nlm.nih.gov/pubmed/26813761

CRISPR/Cas9 gene editing holds great potential to improve agriculture crops.  However, before CRISPR/Cas9 gene editing can expand the regulatory framework needs clarification.  In this commentary Huang et al. propose regulating crops in a product-based over a technology-based approach.  In this method gene edited crops would be regulated like conventionally bread crops while genetically modified crops (i.e. those that contain transgenes), would continue to be regulated as they are today.