The Broad Institute licenses CRISPR/Cas9 to Evotec

Genomeweb, 6 July 2016

In a non-exclusive deal, drug development company Evotec has licensed the CRISPR/Cas9 technology from the Broad Institute.  Evotec will use the technology in drug-development/target identification and with its post-phenotypical screening target deconvolution platform.

CRISPR editing used to determine the mechanism for genome duplication in plants

Schiml et al, PNAS (2016) 113:7266-7271

Duplication of genome sequences is one of the main evolutionary drivers in plants, however the mechanism behind these duplications is not well understood.  By using Cas9 modified to only nick one strand of the DNA Schiml et al where able to induce genome duplications by nicking locations 25 bp-100 bp in length, providing a possible mechanism for genome duplication events.

CRISPR could be harnessed to eliminate latent herpes viruses

Colin Barras, The New Scientist, 30 June 2016

Most people carry some form of herpes virus, and while most are only revealed by cold sores, the virus can cause blindness, birth defects, cancer, and shingles.  Completely eliminating the viruses from an infected host has proven challenging due to its ability to lay dormant.  However gene editing may allow for the blocking of enzymes responsible for Herpes DNA replication, thus effectively destroying the latent viral population.  Currently this technique has been tried in monkey and human cell lines with up to 95% of the viral population being destroyed; however more research is needed before translation to humans.

How morality and ethics governs the Chinese patent process

Yaojin Peng (2016) Nature Biotechnology,

While the focus of CRISPR patents has been on the US battle between the University of California-Berkley and the Broad Institute, other countries patent systems, such as China, have been largely ignored.  Recently many more patent applications have been submitted to the Chinese State Intellectual Property Office.  The number of pending applications and the use of non-viable human embryos in CRISPR experiments have raised questions as to how the Chinese patent system works.  In this article Yaojin Peng describes in detail the kinds of inventions that are allowed to be patented in China and how ethics influences patent decisions.  In particular Peng focuses on the kinds of CRISPR patents that could be awarded and those that would violate Chinese patent law.

CRISPR edited corn could be on the market within 5 years

Emily Waltz, Nature Biotechnology (2016)

The USDA has released two decisions stating that CRISPR edited crops will not be regulated as traditional genetically modified organisms due to their lack of plant pest DNA.  The most recent decision effects DuPont Pioneer’s waxy corn that has been engineered to produce amylopectin.  Amylopectin is a high valued commodity used in processed foods, adhesives, and high gloss paper.  This decision comes after the USDA stated that a mushroom edited to resist browning would not trigger review.

CRISPR gene therapy trial gets approval from the NIH

Sara Reardon, Nature News, 22 June 2016

An NIH advisory board has approved the use of CRISPR gene editing in a small scale cancer therapy trial.  Eighteen patients with various cancers will have their T cells removed and edited using CRISPR before reintroduction.  The T-cells will be edited to detect and destroy cancer cells effectively using the patients own immune system to treat cancer.  This will not be the first use of edited T-cells to target disease.  Previously zinc finger proteins had been used to edit T-cells in HIV patients and TALENS have been used to edit T-cells in cancer therapies.  The use of CRISPR technology is an important step forward as the CRISPR/Cas system could be easily adapted to treat a variety of diseases.

CRISPR Therapeutics partners with Anagenesis Biotechnologies

Press Release, CRISPR Therapeutics,

In an exclusive agreement CRISPR Therapeutics –  founded by Emmanuel Charpentier – has licensed Anagenesis Biotechnologies proprietary paraxial mesodermic multipotent cells (P2MCs).  The P2MC technology allows the differentiation of pluripotent cells into skeletal muscle cells allowing for researcher into CRISPR gene therapies.  CRISPR Therapeutics plans to use the technology to study Duchenne Muscular Dystrophy (DMD) therapies.

Argonaute protein from Natronobacterium is a DNA-guided endonuclease

Gao, F., et. al. (2016) Nature Biotechnology doi: 10.1038/nbt.3547

DNA editing by CRISPR/Cas9 has overtaken previous gene editing technologies as the most commonly used editing method. However despite its widespread use limitations remain.  To overcome these limitations Gao et al. searched a different group of endonucleases called Argonautes.  Argonautes are the main endonuclease involved in RNA-guided RNA silencing, however a subset of Argonautes have been identified that use single stranded DNA to target DNA in extremophile bacteria.  Using BLAST Gao et al. identified an Argonaute protein from a non-extremophile that can cleave DNA both in vivo and in vitro. Further work is needed before it can be used in complex mammalian systems.

National Academy of Sciences, Engineering, and Medicine endorse further study into CRISPR/Cas9 gene drives

Amy Harmon, 8 June 2016, The New York Times,

A panel of ethicists, biologists, and other professionals representing the National Academy of Sciences has released a report endorsing further research into gene drives.  Gene drives harness CRISPR technology to ensure that all offspring inherit a given trait, bypassing traditional Mendelian genetics.  This technology could be used to eradicate the mosquitoes responsible for diseases such as Zika and malaria as well as invasive plant and animal species.  However, the report urged caution on actually implementing a gene drive due to ethical considerations and the potential for unseen consequences.

Electroporation delivery of Cas9/gRNA Ribonucleoproteins into mouse zygotes

Chen, S., et. al. (2016) Journal of Biological Chemistry,

Traditional CRISPR/Cas9 mediated gene editing of mice has involved microinjection of the Cas9/gRNA complexes into zygotes. However, this approach is limited due to the expertise required for microinjection.  Chen et al developed an electroporation based procedure to deliver the Cas9/gRNA complexes and target the Tyrosinase gene allowing for faster and more efficient gene editing.  In 88% of edited embryos both alleles where modified with 42% repaired by HDR to knock-in precise changes.  The authors hope that this methodology will allow for easier gene editing in mice and potentially other model mammalian systems.